Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.

Identifieur interne : 001C66 ( Main/Exploration ); précédent : 001C65; suivant : 001C67

Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.

Auteurs : RBID : pubmed:19552383

Abstract

We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 μm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.

DOI: 10.1021/nn900348c
PubMed: 19552383

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.</title>
<author>
<name sortKey="De, Sukanta" uniqKey="De S">Sukanta De</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Physics, Trinity College Dublin, Dublin 2, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Physics, Trinity College Dublin, Dublin 2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Higgins, Thomas M" uniqKey="Higgins T">Thomas M Higgins</name>
</author>
<author>
<name sortKey="Lyons, Philip E" uniqKey="Lyons P">Philip E Lyons</name>
</author>
<author>
<name sortKey="Doherty, Evelyn M" uniqKey="Doherty E">Evelyn M Doherty</name>
</author>
<author>
<name sortKey="Nirmalraj, Peter N" uniqKey="Nirmalraj P">Peter N Nirmalraj</name>
</author>
<author>
<name sortKey="Blau, Werner J" uniqKey="Blau W">Werner J Blau</name>
</author>
<author>
<name sortKey="Boland, John J" uniqKey="Boland J">John J Boland</name>
</author>
<author>
<name sortKey="Coleman, Jonathan N" uniqKey="Coleman J">Jonathan N Coleman</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2009">2009</date>
<idno type="doi">10.1021/nn900348c</idno>
<idno type="RBID">pubmed:19552383</idno>
<idno type="pmid">19552383</idno>
<idno type="wicri:Area/Main/Corpus">001D95</idno>
<idno type="wicri:Area/Main/Curation">001D95</idno>
<idno type="wicri:Area/Main/Exploration">001C66</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 μm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">19552383</PMID>
<DateCreated>
<Year>2011</Year>
<Month>04</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.</ArticleTitle>
<Pagination>
<MedlinePgn>1767-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/nn900348c</ELocationID>
<Abstract>
<AbstractText>We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 μm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De</LastName>
<ForeName>Sukanta</ForeName>
<Initials>S</Initials>
<Affiliation>School of Physics, Trinity College Dublin, Dublin 2, Ireland.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Higgins</LastName>
<ForeName>Thomas M</ForeName>
<Initials>TM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lyons</LastName>
<ForeName>Philip E</ForeName>
<Initials>PE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doherty</LastName>
<ForeName>Evelyn M</ForeName>
<Initials>EM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nirmalraj</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blau</LastName>
<ForeName>Werner J</ForeName>
<Initials>WJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boland</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>Jonathan N</ForeName>
<Initials>JN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/nn900348c</ArticleId>
<ArticleId IdType="pubmed">19552383</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19552383
   |texte=   Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19552383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024